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When using an infrared detector to measure temperature changes as in the case 
of the flash technique, the effects of detector nonlinearity can have drastic effects 
on the experimental data. In the flash technique, the detector nonlinearity tends 
to shift the calculated half-time to larger values, resulting in underpredicted 
values of thermal diffusivity especially in experiments performed at room 
temperature. In order to predict the error in the diffusivity calculation, the 
nonlinear relationship between the detector signal and the temperature change 
was developed into a Taylor series expansion used in the flash technique's 
mathematical model. The nonlinear detector model proves to yield accurate 
correction factors for the presently calculated values of diffusivity. In order to 
utilize the model, it is necessary to estimate the maximum temperature rise of 
the back surface and the degree of detector nonlinearity. 

KEY WORDS: detector nonlinearity; flash technique; infrared detector; 
thermal diffusivity. 

1. I N T R O D U C T I O N  

Initially developed by Parker et al. [ 1 ], the flash technique has become a 
widely accepted method for measuring the thermal diffusivity of various 
samples over wide ranges of temperatures. The technique was first intro- 
duced to measure the thermal diffusivity of homogeneous samples and has 
since been modified to incorporate heterogeneous samples, including those 
composed of multiple layers [2]. The data analysis has also been modified 
to include radiation losses and finite pulse time effects of the heating 
pulse [3-5]. 
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The experimental technique utilizes a very short-duration pulse of 
energy to heat the front surface of a sample. The resulting back surface 
temperature rise is then measured using either a thermocouple or a 
radiation detector. Defining the half-time ( t l /2 )  a s  the time at which the 
back surface temperature has reached half of its maximum rise, the 
thermal diffusivity for a homogeneous sample can be calculated from the 
relation [1 ] 

L 2 
c~= 1 . 3 7 - -  (1) 

7C2/1/2 

where L is the thickness of the sample and ~ is the thermal diffusivity. This 
relation was derived for one-dimensional heat conduction through a 
homogeneous layer without heat losses, following a Dirac heating pulse. 
The nondimensional back surface temperature rise is shown in Fig. 1 with 
its x axis in number of half-times. 

The method used to measure the temperature transient of the back 
surface is typically a thermocouple or a radiation detector. In many situa- 
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Fig. 1. Normalized rear surface temperature rise following an instantaneous 
heat pulse applied to the front surface. 
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tions, a radiation detector is more convenient to use than a thermocouple; 
thus it is necessary to have a relationship between the sample's back 
surface temperature and the infrared detector's output signal. 

In the past, an infrared detector's output was approximated as linear 
to the temperature at which it was viewing. This approximation is 
fairly accurate for small temperature excursions at higher-temperature 
experimental operating conditions. Unfortunately, the linear approxima- 
tion becomes very inaccurate for experiments performed at room 
temperature. Nonlinearity detector effects have been found to occur in as 
small as a 0.5-K rise at room temperature [6]. 

As first pointed out by Taylor et al [7, 8], the effect of detector 
nonlinearity on the flash technique is a tendency to predict lower values of 
diffusivity than expected [7-10]. Examining Eq. (1), the implication of 
this fact is that the calculated tl/2 is larger than would be expected if the 
detector response was linear. For the situation of heterogeneous samples, 
the same results occur except the diffusivity is an effective diffusivity and 
the half-time is an effective half-time [2]. 

The objective of this work is to develop the mathematical relationship 
between the viewed temperature and the output of the detector. As will be 
shown, this is a very important consideration for experiments performed at 
room temperature. 

2. MATHEMATICAL ANALYSIS OF M O D E L  

2.1. Rear Surface Temperature Rise of a Homogeneous Sample 

The general solution for the back surface rise following an instan- 
taneous heating pulse to the front surface, with an initial temperature of 
zero, can be written as [1 ] 

T( L, t ) = Q I [ - nZ~z2 "~ ] p~LpL 1+2n=1 ~ ( - 1 ) " e x p ~ ~ t ) j  (2) 

where 

Q = energy content of the Dirac pulse 

p = density of the sample material 

Cp = specific heat of the sample 

L - sample thickness 

k = thermal conductivity of the sample 

=- k / p C p  - thermal diffusivity of the sample 
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In order to eliminate the parameter Q from Eq. (2), the following 
calorimetric relation is used: 

Q:pCpLTmax (3) 

where Tma~ represents the maximum temperature rise of the back surface. 
Defining the sample Fourier number as 

at 
FO=L- 5 (4) 

Eq. (2) can then be written as 

T(L,t)= TmaxIl + 2 ~ (-1)nexp(-n2rc2FO)l  (5) 
n : l  

Equation (5) can then be written in terms of dimensionless temperature 
simply as 

T(L't)-II + 2 ~ (-1)nexp(-n27z2FO)l (6) 
T m a x  n = 1 

From Eq. (6), the value of rc2FO is equal to 1.37 when the normalized 
temperature is 0.5. Combining this fact with Eq. (4), the relation given by 
Eq. (1) can easily be shown. 

Equation (6) is very useful in that the exact units of temperature are 
not important; thus provided the device used to measure the experimental 
temperature transient produces a response which is linear to the tem- 
perature, the exact magnitude and units are arbitrary. Unfortunately, when 
an infrared detector is used to measure the transient, the approximation of 
linear response to temperature is extremely limited [7-10]. The following 
analysis will provide the relationship between an infrared detector's 
response and the actual temperature transient the detector is measuring. 

2.2. Detector Response to a Change in Temperature 

An infrared detector measures the intensity of emitted photons with a 
certain bandwith of infrared wavelengths. As the temperature of the film 
surface changes, the intensity of the emitted photons in the range of the 
detector's bandwidth also changes, resulting in a change in the detector's 
voltage output. Thus the voltage output must be related to the corre- 
sponding surface heat flux associated with the surface temperature. 
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The energy emitted by a body at a given temperature and wavelength 
is defined by Planck's distribution law, which states [11] 

C1.~ 5 

eb~ -- exp(c/2) -- 1 (7) 

where 
eb~ " --= spectral emittant energy of a blackbody 

2 - wavelength (/~m) 

T _  = absolute temperature (K) 

cl =- 2 ~ h c  2 = 3.74412 x 108 W .  #m 4. m 2 

c2 - h c / k  = 1.439 x 10 4/2m- K 

h -- Planck's constant 

k - Boltzmann's constant 

c - velocity of light in a vacuum 

The wavelength at which maximum emission occurs can be found by 
differentiating Eq. (7) with respect to 2 and setting the derivative to zero. 
This results in Wien's displacement law, which is given by [11] 

Zm T =  2897.76 # m  �9 K (8) 

Because the infrared detector has a limited spectrum from which it can 
optically view the sample's emitted energy, it is necessary to obtain a 
relation for the change in emitted energy, at the detector's bandwidth, due 
to a change in the film surface temperature. The development begins by 
defining the following two parameters [6, 12]: 

and 

n = - -  (9) 
eb2 

2 
A = - -  (10) 

2m 

where n is the dimensionless sensitivity of the emitted energy at a specific 
wavelength with respect to an infinitesimal change in temperature, and A 
is the ratio of the center of the detector's infinitesimal bandwidth and the 
sample's maximum emission wavelength. By separating the variables in 
Eq. (9) and integrating, the spectral energy emitted at the sensitive 
wavelength of the detector can be written as [12] 

eb~  = K T  n (11) 

840/11/6~8 
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where K is the constant of integration. Using Planck's distribution and 
Eq. (9), it can be shown that the value of n approaches the following two 
asymptotic values [6]: 

5 
n ~ -  for A~2.5 (12a) 

A 

2.5 
n ~ - ~ - +  1 for A>2.5 (12b) 

The greatest error in the approximations given by Eqs. (12a) and (12b) is 
16% for A =2.5 [6]. 

Because the detector is actually measuring measuring the emitted 
energy, Eq. (11) can be applied directly, noting that the constant K must 
also include the emissivity of the sample�9 Rewriting Eq. (11 ) in terms of the 
detector voltage result in 

E = C T  ~ (13) 

where E is the detector voltage output, T is the actual surface temperature, 
and C and n are constants�9 The constant C depends on many factors such 
as the film emissivity, the voltage sensitivity of the detector, and the 
angular aperture of the detector [12, 13]. 

Performing a Taylor series expansion on Eq. (13), the voltage change 
as a function of temperature change can be written as [12] 

n 2 n n 

E -  Eo = nCT~ '(A T) + ~.. CT~- 2(A T) 2 + --. + ~. C(A T) ~ (14) 

where AT is the temperature excursion, T - T o .  If the maximum 
temperature rise, A Tmax, is much smaller than the initial temperature, To, 
Eq. (14) can be approximated as [12, 13] 

E-Eo~-nCT"  1(T-To)  (15) 

Combining Eqs. (14) and (15), the percentage error in Eq. (9) due to the 
truncation of the series can be written as [12] 

nA 1 

�9 \ To J + " ' + ~ \ - - T o - o , }  
e = x 100 (16) 

I+N +~.\ ro ; + + ~ \  To/ J 
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Figure 2 shows a plot of Eq. (16) for various initial temperature conditions 
using an infrared detector with an infinitesimal bandwidth centered at 
4#m.  Excluding the effects of a finite bandwidth, this wavelength is 
representative of the InSb detectors used in this work. 

Observing Fig. 2, it is quite evident that experiments performed at 
room temperature yield significant errors for even small temperature excur- 
sions. Detector nonlinearity has been shown experimentally to have effects 
on room temperature measurements for as little as 2-K excursions [9]. 
However, excursions as large as 50 K at an ambient temperature of 900 K 
yield less than 20% error. By examining both Fig. 2 and Eq. (16), it is 
evident that high initial ambient temperatures are advantageous due to 
both thye reduction in n and the increase in To. The reduction in n is a 
result of the peak emission wavelength being shifted to lower values as a 
consequence of Wien's displacement law given by Eq. (8). 
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Fig. 2. Percentage error in the detector output  due to the assumption of a 
linear detector response for a detector operating wavelength of 4.0 #m. Source: 
Hoefier [12]. 
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2.3. Detector Nonlinearity Applied to the Flash Technique 

In the typical flash technique, Eq. (15) is implicitly used in its nor- 
malized form. Specifically, the detector's voltage output is divided by the 
maximum voltage output, allowing for the constants in Eq. (15) to cancel 
and resulting in the following assumed linear relationship: 

AE(t) AT(t) 
(17) 

AEmax  AZ max  

The relationship given by Eq. (17) is extremely limited in accuracy, as 
Fig. 2 indicates. The optimal conditions are obviously high temperatures 
with small temperature rises. The experiments performed at room 
temperature are extremely sensitive to any temperature excursions. 
Nonlinearity effects can occur with temperature rises as low as 0.5 K at 
room temperature [9]. 

In order to demonstrate graphically the effects of detector nonlinearity 
on the normalized curve, Eq.(5) was used to generate the actual 
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Fig, 3. Effect of a nonlinear detector response on the normalized rear surface 
temperature curve for an experimental operating temperature of 300 K. 
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Fig. 4. Effect of a nonlinear detector response on the normalized rear surface 
temperature curve for an experimental operating temperature of 500 K. 

temperature response for a given Tm~. The calculated temperatures were 
then inserted into Eq. (14) to generate the theoretical nonlinear detector 
signals. This was done for ambient conditions of 300 and 500 K with the 
corresponding values of n calculated from Eqs. (8), (10), and (12a). The 
results are shown in Figs. 3 and 4. Both the figures show that the effect of 
nonlinearity is to shift the normalized curve to the right, resulting in an 
overpredicted value of tl/2 or an underpredicted value of the thermal 
diffusivity. Table I gives the percentage error of the calculated tt/2 for 
various ambient temperatures and Tmax. From Table I it is obvious that a 
5-K rise at room temperature yields the same error as a 50-K rise at 900 K. 

3. E X P E R I M E N T A L  RESULTS 

In order to demonstrate the effects of detector nonlinearity, effective 
diffusivities were obtained for carbon-bonded carbon fiber samples (CBCF) 
[14, 15]. The transient temperature was determined using an InSb liquid 
nitrogen-cooled detector for various levels of laser power. Simultaneous 
back surface temperature rises were determined using a thermocouple in 
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Table I. Percentage Error in the Half-Time and the Diffusivity Calculated from the 
Half-Time, Due to a Nonlinear Detector Operating with a Wavelength of 4.0 #m ~ 

T o = 300 K T o = 500 K T O = 700 K T O = 900 K 
(n = 12.1 ) (n = 7.2) (n = 5.2) (n = 4.0) 

A Tmax 

(K) c~ t m c~ tl/2 ~ tl/2 ~ tl/2 

2 -0 .8  0.8 -0.1 0.1 -0 .0  0.0 -0 .0  0.0 
5 -3 .1  3.2 -0 .7  0.7 -0.1 0.1 -0 .0  0.0 

10 -6 .8  7.3 -2 .0  2.1 -0 .7  0.7 -0 .1  0.1 
15 -10.3 11.4 -3 .4  3.5 -1 .4  1.4 -0 .5  0.5 
20 -13.6  15.7 -4 .7  4.9 -2 .1  2.2 -1 .0  1.0 
30 -19.6  24.4 -7 .3  7.9 -3 .5  3.6 -1 .8  1.8 
40 -24.9  33.2 -9 .8  10.8 -4 .8  5.1 -2 .7  2.7 
50 -29.5  41.8 - t 2 . 2  13.9 -6 .2  6.6 -3 .5  3.6 

a The values of n were calculated from Eqs. (8), (10), and (12a). 

order to see the effect of A Tma x o n  the experimentally calculated values of 
diffusivity. The effective diffusivity was calculated from Eq. (1) following 
heat loss corrections to the data. Overall, the experiments were performed 
at four separate ambient temperature conditions 1-14]. 

The theoretical value of diffusivity for each ambient condition was 
determined by extrapolating the data to the limit of A irma x ~ 0. The third 
column in Table II shows the experimentally calculated values of diffusivity 
with the exception of the values shown in parentheses, which are the 
extrapolated values. The fourth column gives the percentage error in the 
calculated diffusivity with respect to the extrapolated value. The fifth 
column gives the percentage error anticipated using Eqs. (6), (8), (10), 
(12a), and (14). 

In order to determine the operating wavelength of the detector, the 
sensitivity curve as a function of wavelength was used [16]. The center 
wavelength used was that which corresponded to the area-weighted 
sensitivity band. In order words, the wavelength at which the area under 
the sensitivity curve left of the wavelength equaled the area under the 
sensitivity curve right of the wavelength was determined as the effective 
center wavelength. For the case of a liquid nitrogen-cooled InSb detector, 
this corresponded to approximately 4.0 #m. 

The results indicated by Table lI clearly show the effects of 
nonlinearity as A Tma• increases or as To decreases. The errors predicted 
from the nonlinear detector analysis agree quite well with the errors 
calculated from the experimental data. 



Effects of Detector Nonlinearity 1109 

Table II. Comparison of Calculated Diffusivity Errors from Experimental Data and 
That Predicted from the Analysis for Carbon-Bonded Carbon Fiber Samples a 

To A Tma ~ Diffusivity % error % error 
(K )  (K)  (cm 2. s -1 ) in diffusivity b predicted c 

296 zt T ma  x ---* 0 (0.00425)d 0.00 0.00 

1.2 0.00422 -- 0.71 -- 0.21 

6.7 0.00402 -- 5.41 --4.50 

9.5 0.00393 -- 7.52 -- 6.60 

17.0 0.00368 -- 13.41 -- 11.87 

41.0 0.00315 -- 25188 -- 25.84 

373 A T m a  x --, 0 (0.00395) a 0.00 0.00 

4.9 0.00385 - 2 . 5 2  -- 1.78 

8.4 0.00380 - 3.72 -- 3.40 

12.4 0.00370 - 6.26 - 5.64 

30.0 0.00342 - 13.25 - 13.15 

473 A Tma x ~ 0 (0.00368)a 0.00 0.00 

0.6 0.00368 0.00 0.00 

3.4 0.00361 1.90 - 1.14 

9.0 0.00356 - 3.26 - 2.81 

573 d Tma x --* 0 (0.00342) d 0.00 0.00 

0.5 0.00342 0.00 0.00 

2.7 0.00342 0.00 0.00 

3.8 0.00340 - 0 . 5 8  - 0 . 0 6  

6.9 0.00340 - 0.58 - 0.71 

a Experimental data from Groot [14] .  

b Error in the experimentally calculated diffusivity a s suming  the correct value is the 
extrapolated value. 

~ Error in diffusivity predicted from nonlinear detector analysis assuming  a detector operating 
wavelength of 4.0/~m. 

Extrapolated value of data a s  A T m a  x ~ 0. 

4. CONCLUSIONS 

The effect of detector nonlinearity on the calculation of thermal 
diffusivity from experimental data can be large, especially at room 
temperature and below. The approach of developing the Taylor series 
expansion on the nonlinear relationship between the detector output and 
the surface temperature provides an accurate description of the nonlinear 
detector effects on the flash technique. The nonlinear detector model can 
accurately predict the error in the calculation of diffusivity from the 
experimental data due to nonlinear detector operation provided the 
maximum temperature rise on the back surface is known, and the effective 
operating wavelength of the detector can be estimated. 
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